

Chinese Keyword Censorship of
Instant Messaging Programs

(and Work in Progress)

Jeffrey Knockel
Computer Science Department

University of New Mexico

Who Determines What's Censored
in Chinese IM Programs?

IM Usage in China

● In 2010, 77.2% of Internet users in China used
instant messaging

● 350 million users
● Growth rate of 30% from 2009
● Popular IM programs include Tencent QQ,

Alitalk, TOM-Skype, Sina UC...

Source: http://www.iresearchchina.com/view.aspx?id=9205

http://www.iresearchchina.com/view.aspx?id=9205

Popular IM Programs in China

Program Millions of daily users
September 2009*

Tencent QQ/TM 139.85

Alitalk 22.87

MSN 20.11

Fetion 18.51

Caihong 16.94

(TOM-)Skype 2.67

Sina UC 2.53

Baidu Hi 2.08

*Source: http://satellite.tmcnet.com/news/2009/11/06/4467291.htm

http://satellite.tmcnet.com/news/2009/11/06/4467291.htm

Questions

● Which IM programs perform keyword
censorship? Surveillance?

● Is there a “master” keyword list?
● What keywords are censored by which

programs?
● Do programs tend to censor the same

keywords?

Which Censor?

Program Millions of daily
users Sept. 2009*

Censors
keywords?

Example keyword Client-
side?

Tencent QQ/TM 139.85 Yes 法轮 (falun) No

Alitalk 22.87 Yes 吾尔开希 (Wu'er Kaixi) No

MSN 20.11 No - -

Fetion 18.51 Yes falundafa No

Caihong 16.94 Yes 法轮 (falun) No

(TOM-)Skype 2.67 Yes fuck Yes

Sina UC 2.53 Yes 六四 (six four) Yes

Baidu Hi 2.08 Yes 六四 (six four) No

*Source: http://satellite.tmcnet.com/news/2009/11/06/4467291.htm

http://satellite.tmcnet.com/news/2009/11/06/4467291.htm

Client-side Censorship?

● TOM-Skype and Sina UC do censorship “client-
side”

● When the censorship happens inside of the
program
● Not by remote server
● Not somewhere on the network

● Encrypted keyword lists are hidden in program
and/or downloaded

TOM-Skype

● TOM-Skype
● Modified version of

Skype by TOM Group
Limited, a China-
based media
company

● Uses Skype's network
● In China,

http://www.skype.com
HTTP redirects to
http://skype.tom.com

http://www.skype.com/
http://skype.tom.com/

Empirical Analysis of TOM-Skype

● TOM-Skype uses “keyfiles”
● List of encrypted keywords triggering censorship

and surveillance of text chat
● One built-in
● At least one other downloaded
● Lists vary by version of TOM-Skype

3.6-4.2 Keyfiles

● TOM-Skype 3.6-3.8 downloads from

http://skypetools.tom.com/agent/newkeyfile/keyfile
● TOM-Skype 4.0-4.2 downloads from

http://a[1-8].skype.tom.com/installer/agent/keyfile
● Encrypted with naïve

xor algorithm...

procedure DECRYPT (C0..n, P1..n)

 for i ← 1,n do

 Pi = (Ci ⊕ 0x68) - Ci-1 (mod 0xff)

 end for

end procedure

http://skypetools.tom.com/agent/newkeyfile/keyfile
http://a1.skype.tom.com/installer/agent/keyfile

3.6-4.2 Keyfiles

. . .
1EB412B019
77B543CE52 # fuck
98068426842599
. . .

● To crack: point
skypetools.tom.com DNS
queries to our server

● TOM-Skype downloads our
keyfile

● Binary search to find “fuck”

Perform chosen ciphertext
attack

See what gets censored

http://skypetools.tom.com/

3.6-4.2 Keyfiles

● To crack: point
skypetools.tom.com DNS
queries to our server

● TOM-Skype downloads our
keyfile

● Binary search to find “fuck”
● Perform chosen ciphertext

attack
● See what gets censored

77B543CE52 # fuck
77B543CE53 # fucl
77B543CE54 # fucm
. . .
77B341CC50 # duck
. . .

http://skypetools.tom.com/

3.6-4.2 Keyfiles

● To crack: point
skypetools.tom.com DNS
queries to our server

● TOM-Skype downloads our
keyfile

● Binary search to find “fuck”
● Perform chosen ciphertext

attack
● See what gets censored
● Pattern emerges

77B543CE52 # fuck
77B543CE53 # fucl
77B543CE54 # fucm
. . .
77B341CC50 # duck
. . .

procedure DECRYPT (C0..n, P1..n)

 for i ← 1,n do

 Pi = (Ci ⊕ 0x68) - Ci-1 (mod 0xff)

 end for

end procedure

http://skypetools.tom.com/

5.0-5.1 Keyfiles

● TOM-Skype 5.0-5.1 downloads keyfiles from

http://skypetools.tom.com/agent/keyfile
● TOM-Skype 5.1 downloads surveillance-only keyfile from

http://skypetools.tom.com/agent/keyfile_u
● Keywords AES encrypted in ECB mode
● Key reused from TOM-Skype 2.x
● When encoded in UTF16-LE, 32 bytes:

0sr TM#RWFD,a43

● Half of bytes printable ASCII, other half null (weak)

http://skypetools.tom.com/agent/keyfile
http://skypetools.tom.com/agent/keyfile_u

TOM-Skype Surveillance

● TOM-Skype 3.6-3.8 encrypts surveillance traffic with
DES key in ECB mode:

32bnx23l

● TOM-Skype 5.0: no surveillance
● TOM-Skype 4.0-4.2, 5.1 encrypts using different DES

key:

X7sRUjL\0

0045BDBC FF FF FF FF 07 00 00 00

0045BDC4 58 37 73 52 55 6A 4C 00

TOM-Skype Surveillance

● Example surveillance message:
jdoe falungong 4/24/2011 2:25:53 AM 0

● Message author followed by triggering
message followed by the date and time

● 0 or 1 indicates message is outgoing or
incoming, respectively

● Sent in query string to

a[1-8].skype.tom.com/installer/tomad/ContentFilterMsg.php

http://a1.skype.tom.com/installer/tomad/ContentFilterMsg.php

TOM-Skype 3.6-3.8 Surveillance

● Recall TOM-Skype 3.6-3.8 encrypts
surveillance traffic with a different DES key

● Reverse engineering it required circumventing
Skype's built-in anti-debugging measures

● Why not before? TOM-Skype 5.1 sends
surveillance messages from an outside process
called ContentFilter.exe

● Our strategy: DLL injection, a way to execute
our own code inside of TOM-Skype's process...

TOM-Skype 3.6-3.8 Surveillance

● Hook our code into timer function
called before encryption

● Our code sleeps for 20 seconds
● Attach with debugger
● Suspend all other threads
● Resume sleeping thread
● In switch statement, we observed

the following DES key used:

32bnx23l

ADD DH,AH
CMP EAX,33B200ED
JMP SHORT Skype.00ED3DE8
MOV DL,32
JMP SHORT Skype.00ED3DE8
MOV DL,62
JMP SHORT Skype.00ED3DE8
MOV DL,6E
JMP SHORT Skype.00ED3DE8
MOV DL,78
JMP SHORT Skype.00ED3DE8
MOV DL,32
JMP SHORT Skype.00ED3DE8
MOV DL,33
JMP SHORT Skype.00ED3DE8
MOV DL,6C
JMP SHORT Skype.00ED3DE8
MOV DL,24
JE SHORT Skype.00ED3DF0
JNZ SHORT Skype.00ED3DF0

5.0-5.1 Downloaded Keyfile

5.1 Surveillance-only Keyfile

Censored Keywords

● Keyfile contained political words (35.2%)
● 六四 (“64,” in reference to the June 4th Incident)

● 拿着麦克风表示自由 (Hold a microphone to
indicate liberty)

● Prurient interests (15.2%)
● 操烂 (Fuck rotten)

● 两女一杯 (Two girls one cup)

Censored Keywords

● News/info sources (10.1%)
● 中文维基百科 (Chinese language Wikipedia)

● BBC 中文网 (BBC Chinese language)

● Political dissidents (7%)
● 刘晓波 (Liu Xiaobo)

● 江天勇 (Jiang Tianyong)

● Locations (7%)
● 成都 春熙路麦当劳门前 (McDonald's in front of Chunxi

Road in Chengdu)

Surveillance-only

● Mostly political and locations
● Almost all related to demolitions of homes in Beijing

for future construction
● A few related to illegal churches
● A couple company names

Latest Updates

● TOM-Skype 5.5, 5.8 released
● DES key for keyfiles:

\x7a\xdd\xe7\xdc\x23\x25\x53\x75

● All but one keyword is now surveillance-only

● 薄熙来 (Bo Xilai)

● 周永康兵变和警变 (Zhou Yongkang, mutiny and
police change)

● 3 月 17 日重庆人民大礼堂 (Chongqing People's
Auditorium March 17)

Sina UC

● By SINA Corporation
● China-based company
● Owns weibo.com, popular Chinese microblogging site

● Uses Jabber protocol

Empirical Analysis of Sina UC

● Has five lists
● One set of five built-in
● Another set of five downloaded from

http://im.sina.com.cn/fetch_keyword.php?ver=...
● All five lists JSON-encoded
● Then Blowfish encrypted in ECB mode with the

following 16-byte ASCII-encoded key:

H177UC09VI67KASI

http://im.sina.com.cn/fetch_keyword.php?ver=8.2.8.15359

List #4

● Used to censor text chat
● Large number of neologisms for the June 4th

incident:
● 5 月三十五 (May 35th), 四月六十五号 (April 65th), 三月

九十六号 (March 96th)

● 61 过后三天 (three days after June 1st), 儿童节过后三天
(three days after Children's day)

● ⑥④, VIIV, 8|9|6|4, six.4
● 6.2+2

● 八的二次方 (8^2), 2 的 6 次方 (2^6)

List #4

● Even Russian:
● Четыре (four)
● Шесть (six)
● Девять (nine)
● Восемь (eight)
● Восемь-Девять-Шесть-Четыре (eight-nine-six-

four)

● And French:
● six-quatre (six-four)

List #2

● Used to censor usernames (username replaced
with id#)

● Found prurient words like 婊子 (whore), 妓
(prostitute)

● Political: 法輪 (falun), falun, six four

● Phishing:
● webmaster, root, admin, hostmaster, sysadmin,

sinaUC, 新浪 (Sina), 系统通知 (system notice)

Other Lists

● List #1 is a shorter list used to censor both text
chat and usernames

● List #3 contains a lot of domains; has unknown
purpose

● List #5 contains prurient and political keywords;
has unknown purpose (later removed)

Comparative Analysis

● TOM-Skype and Sina UC have lists for different
purposes

● For each, let's union their sets of keywords
● TOM-Skype has 515 unique keywords
● Sina UC has 997 unique keywords
● Overall, 1446 keywords are seen in only TOM-

Skype xor Sina UC
● Only 33 are common to both
● Conjecture: any “master” list must be short

Conjectures

1.Effectiveness Conjecture: Censorship is
effective, despite attempts to evade it.

● Inspired by phrases in keyfiles taken from
documents that did not get as widely distributed
as the authors had probably intended

Conjectures

2.Spread Skew Conjecture: Censored memes
spread differently than uncensored memes.

● Inspired by Google trends data for “two girls
one cup” in English (left) vs. Chinese (right)

Conjectures

3.Secrecy Conjecture: Keyword based censorship is more
effective when the censored keywords are unknown and
online activity is, or is believed to be, under constant
surveillance.

● Inspired by clients' efforts to keep list of censored words
and surveillance traffic secret

Conjectures

4.Peer-to-peer vs. Client-server Conjecture:
The types of keywords censored in peer-to-
peer communications are fundamentally
different than the types of keywords censored
in client-server communications.

● Inspired by the high number of proper nouns in
keyfiles compared to other lists (such as for
GET request filtering)

Conjectures

5.Neologism Conjecture: Neologisms are an
effective technique in evading keyword based
censorship, but censors frequently learn of their
existence.

● Example: 六四 (64), 陆肆 (sixty four), but also
“32 + 32” or “8 squared”

Keyword Censorship

● When programs censor client-side, we can find exact
keyword lists

● Why do TOM-Skype, Sina UC censor client-side?
● Skype network P2P, encrypted, not owned by China
● Sina UC uses Jabber protocol; maybe a “stock” server solution?
● “Distributed” censorship

● Censorship in other IM programs?

For keyword lists, machine and human translations, and
source code, see
● http://cs.unm.edu/~jeffk/tom-skype/
● http://cs.unm.edu/~jeffk/sinauc/

http://cs.unm.edu/~jeffk/tom-skype/
http://cs.unm.edu/~jeffk/sinauc/

Software Updates

Software Updates

● Can we trust software updates on untrusted
networks?

● Iran forged SSL certificates for update servers
● Source:

https://blog.torproject.org/blog/diginotar-damage-disclosure

● Software updates can make us vulnerable
● Contrary to conventional wisdom

https://blog.torproject.org/blog/diginotar-damage-disclosure

Sun Java

Sun Java

● We look at Java 6, but Java 7 is analogous
● Automatic updater periodically queries

javadl-esd.sun.com/update/1.6.0/map-m-1.6.0.xml

● Maps older versions of Java to another URL,
e.g.,

javadl-esd.sun.com/update/1.6.0/au-descriptor-1.6.0_31-b79.xml

http://javadl-esd.sun.com/update/1.6.0/map-m-1.6.0.xml
http://javadl-esd.sun.com/update/1.6.0/au-descriptor-1.6.0_31-b79.xml

Sun Java

● XML file contains
● Textual description
● URL for installer
● Command line arguments
● SHA1 hash of installer

Sun Java

● Installer is downloaded and verified
● Against XML-provided hash
● To have “Sun Microsystems, Inc.” digital signature
● To have a PE version number at least as high as

the Java version presently installed

Sun Java

● We want an executable that
● Has same SHA1 hash as in XML

– We can provide a different hash
● Has a “Sun Microsystems, Inc.” digital signature
● Has a PE version number at least as high as the

Java version presently installed
● Can still somehow run arbitrary code

Sun Java

● javaws.exe
● Comes with Java
● Used to launch “Web start” applications

● Arguments:
● -Xnosplash
● -J-Djava.security.policy=http://url/to/grantall.jp
● http://url/to/hello.jnlp
● -open

● Java 6 Update 31, 7 Update 3 now use HTTPS

Impulse SafeConnect

● Network access control software
● Required to use UNM lobowifi network
● Silently updates itself
● Connects to hard-coded 198.31.193.211 via HTTP (only

accessible on campus)
● XML communication encrypted via Blowfish key:

\x4f\xbd\x06\x00\x00\xca\x9c\x18\x03\xfc\x91\x3f

Impulse SafeConnect

● Server responds with URL's and MD5 hashes
for updated files

● The files are verified to have “Impulse Point
LLC” digital signature

● Blowfish encryption is symmetric
● We can send client arbitrary XML

Impulse SafeConnect

● SafeConnect checks for digital signature
● “Upgrade” to an older client that is signed but

performs no check
● “Upgrade” older client to arbitrary code
● Fixed by 5059.242 by using HTTPS
● Must be on campus to receive fix

Other Programs

● Virtualbox
● Downloads update information via HTTP
● Download links open in browser

Other Programs

● Adobe Flash
● Downloads update information via HTTP
● Verifies digital signature of installer
● Downloaded installer verifies that a newer version of

Flash is not installed

● Google Chrome
● Downloads signed update information via HTTP
● Downloads installer via HTTP
● Verifies installer's hash

Possible Solutions

● People really have difficulty doing updates
● Find and fix all vulnerable software?
● OS-provided service?
● Walled gardens?

Mitigating Censorship

● How can we mitigate censorship?
● Tor

● Overlay network over Internet
● No theoretical guarantees

● Problem: Networks with theoretical guarantees
are too inefficient

● Goal: Provable guarantees and efficiency

Self-Healing Network

● “Fool me once, shame on you. Fool me
ω((log∗n)2) times, shame on me.”

Self-Healing Network

● O(logn)-length quorum path of O(logn)-sized
quorums

● Allow t < ¼ - ε nodes to be byzantine

Operations

● SEND-LEADER:
● Send through quorums' elected leaders
● O(logn) messages

● CHECK:

● O(logn(log∗n)2) messages

● Perform with 1 in (log∗n)2 probability
● Constant probability of detecting corruption

● UPDATE:
● Only called to update network
● Very expensive!

Properties

● Expected latency is O(logn)
● Expected number of messages is O(logn), in an

amortized sense
● Total number of times that a message can be

corrupted is O(t(log∗n)2) in expectation

CHECK

Empirical Results

Empirical Results

Conclusion

● Censorship detection and evasion are two
sides of the same coin

● To protect free and open communication on the
Internet, we need to
● Understand how censorship is implemented
● Continue to work on strategies to evade it

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant

Nos. CCR #0313160, CAREER #0644058,
CAREER #0844880, and TC-M #090517.

Any opinions, findings, and conclusions or
recommendations expressed in this material are

those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

