
Protecting the network traffic of one billion people
Reverse-engineering proprietary cryptography in popular
Chinese apps

Mona Wang, Jeffrey Knockel, and Zoë Reichert

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

Most downloaded apps in 2023?

1
2
3
4
5
6

7
8
9

10
11
12

https://www.businessofapps.com/data/most-popular-apps/

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

Most downloaded apps in 2023?

1 WeChat 1012
2 Alipay 901
3 Taobao 795
4 Pinduoduo 728
5 Instagram 696
6 Douyin 695

7 TikTok 654
8 QQ 583
9 Facebook 553

10 Baidu 491
11 Kuaishou 480
12 WhatsApp 475

https://www.businessofapps.com/data/most-popular-apps/

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

How many always use HTTPS/TLS?

WeChat 1012.4
Alipay 901
Taobao 795.2
Pinduoduo 728.2
Instagram 696
Douyin 694.9

TikTok 654
QQ 583.2
Facebook 553
Baidu 490.6
Kuaishou 480.3
WhatsApp 475

https://www.businessofapps.com/data/most-popular-apps/

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

How many always use HTTPS/TLS?

❌WeChat 1012.4
❌ Alipay 901
❌ Taobao 795.2
❌ Pinduoduo 728.2
✅ Instagram 696
✅Douyin 694.9

✅TikTok 654
❌QQ 583.2
✅Facebook 553
❌Baidu 490.6
❌Kuaishou 480.3
✅WhatsApp 475

*but they’re also not not encrypting…

many of them are using proprietary cryptography

https://www.businessofapps.com/data/most-popular-apps/

Uh-oh

Three case studies

1. WeChat (1 bill+ users) - Mona
2. Chinese-language keyboards (800 mill+ users) - Zoë
3. Browsers popular in China (400 mill+ users) - Jeff

WeChat

“MMTLS”?

1. Security: How secure is the cryptography?
2. Privacy: What sort of analytics data is WeChat collecting and

sending over the network?

Security: How secure is the cryptography?

How does WeChat request encryption work?

How does WeChat request encryption work?

How does WeChat request encryption work?
● They’re encrypted twice

○ (and also differently if you’re logged-out)

Protobuf
data

AES-CBC w/
“session key”

WeChat request
headers

ciphertext1
ciphertext2AES-GCM w/

ECDH-derived key

MMTLS headers

“Business-layer” encryption “MMTLS” encryption

Problems
Business-layer encryption

CBC-mode with “session key”

● No integrity/authenticity
○ “Signature” is forgeable

● Not CPA-secure (i.e. deterministic)
○ Key, IV re-use

● Key entropy measured around 100 bits
○ Server chooses session-key

● Long (key, IV) lifetime
○ As long as user has WeChat open

● AES-CBC
○ As long as user has WeChat open

MMTLS encryption

GCM-mode with ECDH-derived key

● Deterministic IV
○ GCM mode– can lead to accidental IV

re-use
● Limited forward secrecy

○ Vast majority of requests are 0-RTT session
resumptions

● No replay protections
○ Vast majority of requests are 0-RTT session

resumptions

Privacy: What sort of analytics data is WeChat collecting
and sending over the network?

We looked at WeChat Mini Programs as a case study

WeChat Mini Programs

Chat

Moments
Mini

Programs

WeChat Mini Programs

Chat

Moments
Mini

Programs

WeChat Mini Programs

Chat

Moments
Mini

Programs

WeChat Mini Programs

HTML
JS
CSS

Pinduoduo servers
HTTP

WeChat Mini Programs

HTML
JS
CSS

WeChat Mini Programs

HTML
WXJS*
CSS

Custom WeChat
JS API

wx.request(...)

WeChat Mini Programs

HTML
WXJS*
CSS

Custom WeChat
JS API

wx.request(...)

Pinduoduo servers
HTTPS

WeChat Mini Programs

HTML
WXJS*
CSS

Custom WeChat
JS API

wx.request(...)

Pinduoduo servers

WeChat servers

HTTPS

MMTLS

Decrypted MMTLS request during Mini Program usage

"pagepath": "pages/item/detail/detail.html",
"referpagepath": "pages/search_pg/index/index.html",
"query":

"ss_pos_type=normal&referer=https://wq.jd.com/wxapp/pages/search_pg/index/index&
__navVer=1&search_tab_result=0&csid=9527036b7fdef1f5619ce3823fa6da80_17067522670
69_1_1706752267069&actid=&search_result=2&appCode=msc9ed9e31&ss_item_type=1
&__pid=Pxatsdyboel0a&cover=https://img20.360buyimg.com/n1/jfs/t1/200392/11/34403
/24690/6538dd03Fe7c3bb76d48516219c63a15a.jpg!q70.dpg&pps=&ss_tab_type=1&sf=14&po
s=1&price=1675.00&name=斯凯奇（Skechers）男士运动休闲鞋 Segment The Search 经典潮流舒
适低帮鞋Dark Brown 标准
41.5/US8.5&sku=10089285173453&factory_goods=0&key=XXXXXX_SEARCH_DATA&navStart=17
06752266671",

"clickTime": 1706752266696,
"reportTime": 1706752266767,
"anchorTargetRelatedText": "仅剩2件斯凯奇（Skechers）男士运动休闲鞋 Segment The Search 经
典潮流舒适低帮鞋 Dark Brown 标准41.5/US8.5
织物¥1675分期免息闪电退款包邮HEADED EAGLE海外专营店"
}

WeChat Mini Programs Analytics (We分析/WeData)

● Sends data about Mini Program usage/browsing back to WeChat over MMTLS
● Opt-in by default for all Mini Programs
● By default, all browsing activity is sent

○ Sends location, device metadata, page details, page path

Please help us continue this work!

● # MMTLS users is on a similar order of magnitude as # TLS users
○ More scrutiny from security researchers is needed; it deserves as much

scrutiny as TLS!
● Studying these protocols enables future privacy studies such as this one

Vulnerabilities across popular
Chinese-language keyboard apps

Imagine one billion people around the world typing, and as
they’re typing, a network eavesdropper could be reading

every character they write…

including passwords, sensitive information, and private
(even end-to-end encrypted) messages.

What do all of these people
have in common?

They are all users of keyboard apps from
Baidu, Honor, Huawei*, iFlytek, OPPO, Samsung, Tencent, Vivo, and Xiaomi

— the most popular cloud-based keyboard apps in China.

We found that

8 out of 9
vendors’ keyboard apps revealed user keystrokes

As network eavesdroppers, we were able to intercept and
completely reveal the contents of usersʼ keystrokes in transit.

Why do so many
people need a
“cloud-based”
keyboard app?
Many of us may be used to
typing out Latin script– using
an alphabet of only 26 letters–
but typing Chinese characters
is a little bit trickier.

● There are tens of thousands of
Chinese characters (used with
varying frequency, of course).

● The keyboard apps we analyzed
are installed on your phone or
computer, allowing you to easily
type in Chinese.

● Market research estimates that
nearly one billion users around
the world use these apps!

Case Study: What kinds of vulnerabilities did we
find in Sogou Input Method?

In each version of the app:

iOS 11.21 → predictable AES key and IV, however, no known exploit

Windows 13.4 → vulnerable to a padding oracle attack

Android 11.20 → vulnerable to a padding oracle attack (with slight
modifications)

Detailed explanation of Windows and Android exploits to follow…

Sogou’s EncryptWall
● EncryptWall request is sent as an HTTP

POST request to a Sogou EncryptWall API
endpoint

○ Contains the AES key and
initialization vector (IV), which are
used to encrypt the other data in
the request

○ In most cases the AES key and IV
are both generated randomly for
each request

● As network eavesdroppers, we were able
to intercept the HTTP POST requests and
alter them ourselves

DATA

DATA

zlib_compress

DATA

AES_cbc _encrypt

DATA

base64_encode

Padding Oracle Attack
The first CBC padding oracle attack was published in 2002, and
Sogouʼs use of CBC-mode left their encryption vulnerable to this type of
attack (with some modifications).

AES-CBC encryption and decryption
⊕ is the XOR (“exclusive
or”) operation. It works
bit-by-bit!

⊕ is easy to reverse:
the inverse operation
of XOR is itself!!

Padding Oracle Attack Part 1: PKCS7 Padding

One of the first things the server does
after receiving and decrypting encrypted
data is to check if the padding is correct.

Sogouʼs server returned unique HTTP
status codes when the padding was
incorrect versus when the padding was
correct. This is our padding oracle.

Last block of plaintext:
plaintext byte

padding byte

1

2 2

1

3 3 3

…

161616 16 16 161616 1616 1616 16 161616

Padding Oracle Attack Part 2: changing the last byte
of the penultimate ciphertext block changes the last byte of
the final plaintext block.

XOR

X

X⊕Y

Y

256
There are only

possible bytes

Windows
IV = ??? (encrypted)

But we were able to recover
the decrypted IV with some
creative XOR-ing!

Padding Oracle
Attack Part 3

Android
IV = “EscowDorisCarlos”

This diagram shows decryption using Sogouʼs
EncryptWall in the Android version of the app

Sogou sent their AES key r XORed with k, which means that if we had k, we could easily
retrieve r.

(k2⊕ r2) → unreadable (k2⊕ r2) ⊕ k2 → r2

We were able to recover k2 and therefore the second half of their AES key, r!

One of the things we decrypted in the Android version was a list of every app installed on the
Android device…eek!

Padding Oracle Attack Part 4: More Vulnerabilities in the
Android Version

Use of Transport Layer Security:
Wrapping transmitted data in
TLS blocks our side-channel
attack.

Only Huawei used TLS before
our disclosures.

Our solution to these issues:
We recommended to each
vendor that they use TLS (a
widely-respected, industry
standard cryptographic
protocol).

Sogou’s Encryption System vs Other Keyboard Apps
Use of Sogou:
Sogouʼs EncryptWall was also
used by:

● QQ Pinyin (also
developed by Tencent)

● Samsung
● Huawei*
● Xiaomi
● OPPO
● Vivo

(Sogouʼs keyboard comes
pre-installed on some phones.
So do Baiduʼs and iFlytekʼs.)

Other apps:
Common vulnerabilities across
apps:

● Static/predictable keys
and IVs

● Outdated cipher systems
(e.g. ECB mode, DES)

● Failing to follow modern
cryptographic standards

For details on each keyboard
appʼs vulnerabilities,

read our report.

What did we decrypt?

→ URL, GET parameters, and raw POST
data

Thatʼs weird… it looks like what we
typed when we were testing!

What’s going on here?
All of these keyboard apps are sending user keystrokes to servers in China,
and they are (for the most part) using very poor encryption to do so.

potential
eavesdropper

(Most users are in China, but market research shows that Taiwan,
Japan, and the US host not-insignificant numbers of users as well)

But Why?
These keyboard apps rely on a cloud-based
predictive text feature (which can be enabled
by the user) in order to suggest which character
a user may want to type.

This is especially important when typing in
Chinese because there are so many characters.

Results of Our Disclosures
Before our disclosures* After our disclosures

What does this mean for users?
1. Users of any Baidu, iFlytek, or Sogou keyboards, including the versions

that are bundled or pre-installed on operating systems, should update
their apps and operating systems ASAP.

2. Users of Honorʼs pre-installed keyboard or QQ Pinyin should switch
keyboards immediately.

3. However, high-risk users should be aware that enabling cloud-based
features in these apps means that the vendor (and whoever they
choose to share the information with) will still be able to read
everything that users type on their devices.

These apps operate under Chinese jurisdiction and are subject to
Chinese laws, which may be concerning to some users.

Privacy and Security Issues in
BAT Web Browsers

What’s the most
popular mobile web
browser?

What’s the second
most popular mobile
web browser*?
(*In 2016 when we initially did this analysis.)

BAT (Baidu Alibaba Tencent) Browsers

Baidu Browser
(百度浏览器)

QQ Browser
(QQ浏览器)

UC Browser
(UC浏览器)

● Reverse engineered Android & Windows versions
● Findings:

○ Found that each uses “easily decryptable” crypto (or
sometimes no crypto) to transmit sensitive data

○ Found that most have insecure self-updating
processes vulnerable to remote code execution

High level findings

“Easily decryptable” crypto?

● Easily decryptable by anyone eavesdropping on the traffic
who has reverse engineered the software

● E.g., naive “home-rolled” crypto algorithms
● Symmetric crypto algorithms with hard-coded keys
● Asymmetric crypto with huge flaws

Kinds of sensitive data sent insecurely

● Personally identifiable
○ Hardware serial numbers
○ (Not so possible on mobile these days)

● Location
○ Geolocation coordinates
○ Active wireless access point
○ In-range wireless access points

● Activity
○ Search bar queries
○ URL of every page visited
○ Title of every page visited

Example transmission by UC Browser (encrypted)

m90.!.Ã#Ù.
GÚ}å.~%..7ÛÅC.\ ..§+xKû.,ý...%/@&..cq*.Í2äh:ÜÈ´Ü>ë..½.OL8."|.º±..¿Ü.ôýî. Ï¡°
_.Wß.p..dÄ·..¬à»®ðÕZìÁn..¶w.äb.!â.©Öà.&.J.Ë.ü7.5 w-.°,º.Ý$......0F.ß.#¶>.{$.
.CW[¿=.P.é.ôH.nþóTnM¸...ý.ËÙ+.îPÝû..u¦p.ãCËhìì!×¥ïæ 1Ï³¿.Þ@h.«Ww.X.u,¬W..å{.
H9ù·.Ä×#.S..@..!x.¢$w...¾;ýdt©Ì.öR.£(jY¦T|¸æsÐ~Ñö}.pOnJ$..M5E.ÃÅc.ÿãJç©.Ë©.¦
JzÄa/¥%jM.´Ê.ØÑ/r¾..çÃÁì|F-.G±:ºiíS¢¬òÏk8í$^6.p;.V¬é.YQ¡.ùÕ.ÿ+Í£..ÿ+V.##.5.Í
¯P.(ß¯h..O±ç¨.O>v2-äµ&r×À..dð.Ät;. ,©`×.Ñì..×.÷ªÕ¢å...O._Û¶.Át"ì´öZX.].ÑBùù.
Ìªf&cõ.ÓïW.ÒÙK.ßæ.°.W.ò.¿ñí3¯...è]G.Trg.¶»fKKb.ª.Ý.W B..B.oª.c#..ú..ÃÏ.Þ..¡µ
ê.+².2Å

How to decrypt this?

● Reverse engineer the software
● No asymmetric crypto :(
● Discover algorithm: home-rolled XOR
● Discover the key: "b59e216a8067d108"
● Write a python script to decrypt it

Example transmission by UC Browser (encrypted)

m90.!.Ã#Ù.
GÚ}å.~%..7ÛÅC.\ ..§+xKû.,ý...%/@&..cq*.Í2äh:ÜÈ´Ü>ë..½.OL8."|.º±..¿Ü.ôýî. Ï¡°
_.Wß.p..dÄ·..¬à»®ðÕZìÁn..¶w.äb.!â.©Öà.&.J.Ë.ü7.5 w-.°,º.Ý$......0F.ß.#¶>.{$.
.CW[¿=.P.é.ôH.nþóTnM¸...ý.ËÙ+.îPÝû..u¦p.ãCËhìì!×¥ïæ 1Ï³¿.Þ@h.«Ww.X.u,¬W..å{.
H9ù·.Ä×#.S..@..!x.¢$w...¾;ýdt©Ì.öR.£(jY¦T|¸æsÐ~Ñö}.pOnJ$..M5E.ÃÅc.ÿãJç©.Ë©.¦
JzÄa/¥%jM.´Ê.ØÑ/r¾..çÃÁì|F-.G±:ºiíS¢¬òÏk8í$^6.p;.V¬é.YQ¡.ùÕ.ÿ+Í£..ÿ+V.##.5.Í
¯P.(ß¯h..O±ç¨.O>v2-äµ&r×À..dð.Ät;. ,©`×.Ñì..×.÷ªÕ¢å...O._Û¶.Át"ì´öZX.].ÑBùù.
Ìªf&cõ.ÓïW.ÒÙK.ßæ.°.W.ò.¿ñí3¯...è]G.Trg.¶»fKKb.ª.Ý.W B..B.oª.c#..ú..ÃÏ.Þ..¡µ
ê.+².2Å

Decrypted

bluesky.1.5.1.1.10?cache=3102618000&ka=&kb=e2e63e260805aea910e1c2ce02b05211&
kc=3b5d366db90b1b60e22260a0278331f8v0000002e9952d46&firstpid=0501&bid=800&ve
r=5.5.10106.5&defalutbrowser=UCHTML.AssocFile.HTML&flashver=&hi=Intel(R) Cor
e(TM) i5-4300U CPU @ 1.90GHz&0&VB3bb90c33-fc547c89&searchaddress=google&sear
chbar=google&searchquick=google&openurltab=0&showsearch=1&showextension=1&ap
plyall=0&cloudspeed=0&autopage=0&autologin=0&theme_id=569&wallpaper_id=207&a
utoclearhistory=0&service=1&sis_fool=5.1.2600_SP3_x86&tch=0&ad_switch=10&lan
g=zh-CN

Example 2 encrypted

m90...._Õ.
÷.y.]¢=»ù¤Ìü<.Oò+DÛxh..Æj.¤]ß?;..u.Öá..7Ò.p`üPÐ·.O"c.ïoÔ¸$ Ä.Úm.¯.ø.¤Ñ.$"gÉ^
¿<kp8äL½.XgEÇ\0ïn...Ü5.F|¢?í.ª3..Ím5°.êó....ü÷Ö% 7a.`(þ/mXa¥nÁS...Õø.·.Ý.÷tÈ
Ø3'gÿ.j...ß±È.À0Bxä.Ù.8´î½û]üI3Ñe.O³¿G.Ö|.+½.ñpJÊÑ.+V.huÚ.È[~Ø.SG¨¶ÐLp`Ñ!.Þf
^4eåá.ç1s.ÈfdÐ>Öz÷v\6K.ÁÐ¥9.ýÈ~^...¥Í5.þ.st·U.Ó´®.dÄE[ñFÀ.ÎF²L..ýêth=.zãé¬;ë
=\nL..ØÔÕ¼..[+ÊÔÌ.¯Þ!!'alrÖ.0..qJ®\9Uë..¶Y.ýk·2Ñg¬DÚ5Á.ó%<qE.u.`ÿ.®â.2o.Ú½.÷
¤.Ô.]uùz.ø.ç.Å..Üú`ã (WäÓ.Ç.yà#:¶+ÝA9.µ3.:1!öf¬.XE.£.ð÷¬1ð.ÐCT.5/¿*ØHø~©P.ÉJ
 .L©Gq..`..OO9:.'ùïHÊG..úLÇ..Ï.¡.×öJ¶¤,ao+/.©.ËZ.Ø..ÚN....|.Ê8.æ.p.9¯F.ð`.Öô
áÆ©.ëXü.1©>W.§.X2Å.c..r¸{.Í°^.+î.y{.çáÀ..N®Ü,_ùR%.Æ%uµÍÉc£.7ù&.n..íH×Ë <¯P.Ö
ZðuÑ¥1.».mu.È. 7æÌ¶,Ý .Tj&×ýó£&.;´ä.á.ý÷÷...B..³.u[...).rïw¸;.èQ)W.e]Ü.:ÑôúU
.õ$óm-ûÔ}¡õÓ..@^b\..îâ%!Élq,ÅQPô..í sÓ..±....9ïNÉ¢mÆÍÍßéÁ.ý±r.÷§ö..q$.).§y5B
î.Q.Xôù.Ì^nÊKÒ.ðM·."t» «.ZÀ3mAØ¶Õ

Example 2 decrypted

bluesky.1.25.1.1.7?cache=3766412000&ka=&kb=e2e63e260805aea910e1c2ce02b05211&
kc=3b5d366db90b1b60e22260a0278331f8v0000002e9952d46&firstpid=0501&bid=800&ve
r=5.5.10106.5&type=1&ssl=1&bandwidth=29.63&target_ip=64.106.20.27&redirect_s
tart=0&redirect_duration=0&dns_start=0&dns_duration=218&connect_start=218&co
nnect_duration=251&request_start=469&request_duration=916&response_start=138
5&response_duration=1&dom_start=1386&dom_duration=268&dom_interactive=234&do
m_content_load_start=1420&dom_content_load_duration=0&load_event_start=1654&
load_event_duration=26&t0=1385&t1=1719&t2=1719&t3=1420&total_requests=2&requ
ests_via_network=2&cloud_acceleration_enabled=0&average_of_request_duration=
809&average_of_t2_duration=859&private_data=host=www.cs.unm.edu|url=https://
www.cs.unm.edu/~jeffk/&lang=zh-CN

Baidu Browser

● RC4 key "HR2ER"
● AES key "h9YLQoINGWyOBYYk"
● XOR mask (0x2D382324), bit rotations
● Base64 encoding with nonstandard alphabet:

qogjOuCRNkfil5p4SQ3LAmxGKZTdesvB6z_YPahMI9t80rJyHW1DEwFbc7nUVX2-

● Modified TEA crypto + non-standard block cipher mode, key
“vb%,J^d@2B1l'Abn”

● …

UC Browser

● Home-rolled XOR-based algorithm with various
keys ("b59e216a8067d108",
"e19237a3a933f7eb", "aa171021f9438cb2")

● XOR mask "\xee\xb9\xe9\xb3\x81\x8e\x97\xa7"
● AES "key autonavi_amaploc"

QQ Browser

● RSA public key 245406417573740884710047745869965023463

● Remember: if we can factor this number, we can derive the
private key

QQ Browser

● To factor it, we built our own quantum computer

QQ Browser

● RSA public key 245406417573740884710047745869965023463

QQ Browser

Symmetric keys are generated poorly:

int i = 10000000 + new Random().nextInt(89999999);
int j = 10000000 + new Random().nextInt(89999999);
return (String.valueOf(i) + String.valueOf(j)).getBytes();

Entropy reduced from 2128 to 899999992 < 253.

QQ Browser

Symmetric keys are generated poorly:

Random random = new Random(System.currentTimeMillis());
byte[] bArr = new byte[8];
byte[] bArr2 = new byte[8];
random.nextBytes(bArr);
random.nextBytes(bArr2);
return new SecretKeySpec(ByteUtils.mergeByteData(bArr, bArr2), "AES");

If you know the time, you know the key…

Vulnerable SDK

● Code leaking personally identifying and locational data in
browser actually from a Baidu SDK

● Found SDK in hundreds of Google Play store apps
(some very popular)

● ES File Explorer File Manager (com.estrongs.android.pop)
has 100,000,000 – 500,000,000 installs

Vulnerabilities in update processes

● Remote code execution
● Vulnerabilities

○ Failing to check digital signatures (or protected with easily decryptable
crypto)
■ Baidu Android, Baidu Windows, QQ Android, UC Windows

○ Failing to check version numbers → downgrade to vulnerable version
■ QQ Windows

○ Failing to check app name → sidegrade to vulnerable product
■ QQ Windows, UC Android

Disclosure

● We reported all of the vulnerabilities
● Most were fixed
● New ones have since been introduced

How did this happen?

Deliberate backdoors? No.

● Not a good backdoor
● CNCERT/CC is trying to improve domestic encryption
● Can get warrants for data

How did this happen?

Market Factors

● Highly competitive market
● Tight deadlines
● “Collect it all”

How did this happen?

Political factors

● Lack of access to Google Play
● Skepticism of “western” cryptography (e.g., Dual_EC_DRBG)

● We must pay more attention to apps from understudied ecosystems

Takeaways

● We must pay more attention to apps from understudied ecosystems
● Cost-benefit analysis: Huge user bases + major vulnerabilities + that

are easy to find == high impact

Takeaways

● We must pay more attention to apps from understudied ecosystems
● Cost-benefit analysis: Huge user bases + major vulnerabilities + that

are easy to find == high impact
● Finding vulnerabilities in popular North American browsers is

becoming increasingly difficult

Takeaways

● Any researcher that even looked at this traffic in Wireshark would
know there is a problem

Takeaways

● Any researcher that even looked at this traffic in Wireshark would
know there is a problem

● If you know how to use Wireshark, you can get going analyzing
understudied software

Takeaways

● Any researcher that even looked at this traffic in Wireshark would
know there is a problem

● If you know how to use Wireshark, you can get going analyzing
understudied software

● Please join us in studying software in understudied ecosystems

Takeaways

