
The not-so-silent type
Breaking network crypto in almost every popular
Chinese keyboard app

Jeffrey Knockel (Citizen Lab) and Mona Wang (Princeton University)

What’s a Chinese IME?

What’s a Chinese IME?

What’s a Chinese IME?

What’s a Chinese IME?

How does one type/input Chinese?

The advent of “cloud-based” prediction

The advent of “cloud-based” prediction

The advent of “cloud-based” prediction

Landscape of Chinese IMEs

Landscape of Chinese IMEs

They are keyloggers

This talk is not about how they are keyloggers

Threat model

● Attacks on Sogou: Active network adversary
● All other attacks?

All other attacks: Passive network adversary

Adversaries

● Anyone on your network
● Your ISP
● The server’s ISP
● Every network in between
● Every state actor in between

Will VPNs save us?

Illustration by D. Thomas Magee

We are not here to show off how clever our attacks are

● The problem is how easy our attacks are

● But… some of our attacks are cool :)

* Default keyboard on device

We considered an app secure if it used TLS

Keyboard Craptography Part 1: Sogou (The “Encrypt Wall”)

● Windows
● Android
● iOS

Sogou Windows

Sogou Craptography for Windows

● K – AES key
● V – IV
● U – tunneled URL
● G – tunneled GET params
● P – tunneled POST params

Sogou Craptography for Windows

● K – AES key k (encrypted with 1024-bit public RSA key)
● V – IV v (encrypted with 1024-bit public RSA key)
● U – tunneled URL (encrypted with k and v)
● G – tunneled GET params (encrypted with k and v)
● P – tunneled POST params (encrypted with k and v)

CBC padding oracle attack

Last block of plaintext:
plaintext byte

padding byte

1

2 2

1

3 3 3

…

161616 16 16 161616 1616 1616 16 161616

● Padding oracle?
● Distinct responses for

good/bad padding

CBC padding oracle attack

CBC padding oracle attack

ciphertextn-1 ⊕ Decrypt(ciphertextn)
 = plaintextn

XOR algebra

Since X ⊕ X = 0…

1. ciphertextn-1 ⊕ Decrypt(ciphertextn) = plaintextn
2. ciphertextn-1 ⊕ Decrypt(ciphertextn) ⊕ plaintextn = 0

3. Decrypt(ciphertextn) = ciphertextn-1 ⊕ plaintextn

ciphertextn-1 ⊕ Decrypt(ciphertextn) = plaintextn
Find byte b such that

b ⊕ Decrypt(ciphertextn)[15] == 0x01 ⇒ Decrypt(ciphertextn)[15] == b ⊕ 0x01

To recover plaintextn[15]

plaintextn[15] = ciphertextn-1[15] ⊕ b ⊕ 0x01

Set

ciphertextn-1[15] = b ⊕ 0x01 ⊕ 0x02

Find b such that

b ⊕ Decrypt(ciphertextn)[14] == 0x02

…

CBC padding oracle attack

● Problem 1: IV encrypted with RSA key
● Problem 2: plaintext is zlib-compressed

CBC padding oracle attack

● The beginning of the URL field “U” is predictable during typing
● Same key, IV used for U, G, and P
● Set IV = all zeros
● Attack first block per normal, yielding plaintext1 ⊕ IV
● We know plaintext1 (!)
● We can recover the IV

1 {
 1: 1
 2 {
 1 {
 2: "1111_sogou_pinyin_guanwang_13.4e_1111"
 3: "13.4.0.7561"
 5: 3
 7: 1
 8: "13.4.0.7561"
 }
 7: "nihaohaohaohaohaohaohaozdaasdfffaahellocanyoureadthis"
 16: 11
 17 {
 3 {
 1: 2
 2: 1
 }
 9: 1
 10: 1
 }
 19 {
 4: "0"
 }
[...]

Sogou Android

Sogou Craptography for Android

● K – AES key k (encrypted with 1024-bit public RSA key)
● V – IV v (not encrypted this time)
● U – tunneled URL (encrypted with k and v)
● G – tunneled GET params (encrypted with k and v)
● P – tunneled POST params (encrypted with k and v)

Sogou Craptography for Android

● K – AES key k (encrypted with 1024-bit public RSA key)
● V – IV v (not encrypted this time)
● U – tunneled URL (encrypted with k and v)
● G – tunneled GET params (encrypted with k and v)
● P – tunneled POST params (encrypted with k and v)
● R – k ⊕ another AES key r
● S – k ⊕ (s encrypted with r and “EscowDorisCarlos”)
● E – k ⊕ (e encrypted with r and “EscowDorisCarlos”)
● F – k ⊕ (f encrypted with r and “EscowDorisCarlos”)

Sogou Craptography for Android

Sogou Craptography for Android

● Let 256-bit k = 128-bit k1 || 128-bit k2
● After attack, first plaintext blocks of S, E, F:
● k2 ⊕ s
● k2 ⊕ e
● k2 ⊕ f
● s is predictable
● We can recover k2

● We can recover e, f, and r2

1 {
 1: "com.android.messaging"
 2: "11.20"
 4: 1
 6: "android_sweb"
 8: "Google"
 10: "android_sweb"
 11: "11.20"
 14: "30"
 18: "-1"
 22: "5682b3aa4fa7bd40d776c93a35a77c6d"
}
2 {
 1: 0xbff0000000000000
 2: 0xbff0000000000000
 3: "-1"
}
3: 1
4: "canyoureadthis"
11 {
 1: "onekeyimageenable"
 2: "1"
}

Sogou Craptography for iOS?

● Key generation?
● Key from Unix time in seconds
● If you know the time, you know the key
● IV from Unix time in seconds
● Key likely to be IV
● The IV is transmitted unencrypted!

Sogou Craptography for iOS?

● BUT, all of this is wrapped in TLS!

Keyboard Craptography Part 2: iFlytek

● Android
● iOS
● Windows

iFlytek craptography for Android

● Encrypted using DES key k in ECB mode.

iFlytek craptography for Android

● Encrypted using DES key k in ECB mode.
● How is k derived?

[...]

iFlytek craptography for Android

● Encrypted using DES key k in ECB mode.
● How is k derived?

k = b'%08u' % ((s % 0x5F5E100) ^ 0x1001111)

where s is the current Unix time in milliseconds.

iFlytek craptography for Android

● Who can decrypt everything you type?
● Anyone who knows the time
● Just in case you don’t know the time, they tell you the

time for you…

1: 0
2: 0
3: 49
4: "xxxxx"
5: 0
7 {
 1: "app_id"
 2: "100IME"
}
7 {
 1: "uid"
 2: "230817031752396418"
}
7 {
 1: "cli_ver"
 2: "12.1.14983"
}
7 {
 1: "net_type"
 2: "wifi"
}
7 {
 1: "OS"
 2: "android"
}
8: 8

iFlytek craptography for iOS and Windows?

● Same problems but… wrapped in TLS

Keyboard Craptography Part 3: Baidu

● Samsung
● Windows
● Android
● iOS

Baidu craptography for Samsung

Baidu craptography for Samsung

● Randomly generate “AES” key k1
● “Generate” “AES” key k2
● “AES”-encrypt k1 with k2
● Encrypt message with k1
● Transmit encrypted k1 and encrypted message

Baidu craptography for Samsung

● How does recipient know k2?

Baidu craptography for Samsung

● “AES”?
● Modified AES with additional permutations…
● Security through obscurity…

{0: [800,
 1276,
 10,
 0,
 '92F8EE78F1DDCBE74CFEB1166F70883D%7C0',
 'a1|SM-T220-gta7litewifi|320',
 '8.5.20.4',
 'com.android.settings.intelligence',
 '1012497q',
 b'',
 ['2你好惨又热大腿'],
 b''],
 1: [0, b'', 'nihaocanyoureadthis']}

Baidu craptography for Windows

● Mostly cosmetic differences versus Baidu on Samsung
● “AES”v2
● Instead of additional permutations…
● One fewer round

[...]
2 {
 1: "nihaocanyoureadthis"
 5: 3407918
 }
3 {
 1: 107
 2: 10
 5: 1
 }
4 {
 1: "1133d4c64afbf1feda85d3c497dd6164|0"
 2: "wn1||0"
 3: "6.0.3.44"
 4: "notepad.exe"
 }
[...]

Baidu craptography for Android and iOS

● Uses an upgraded protocol

Baidu craptography for Android and iOS

● “AES”v3
● Uses modified CTR mode

Baidu craptography for Android and iOS

● Modified CTR mode fails to have cryptographic diffusion

● IV and key re-use: plaintexts with same first N blocks will encrypt to the same
first N ciphertext blocks

Baidu craptography for Android and iOS

● Static elliptic-curve Diffie-Hellman! But…
● IV and key are re-used across application lifetime
● No forward secrecy (pinned static server key)
● Lack of message integrity (only CRC32)
● Modified CTR mode fails to have cryptographic diffusion

Keyboard Craptography Part 4:
Samsung IME

Keyboard Craptography Part 4:
Samsung IME

Is it even craptography?

If there is no cryptography?

Generalizing attacks

Discussed attacks can generally also be applied to…

● incoming data
● spoofing data
● modifying data

“Please do not make it public”

* Default keyboard on device

* Default keyboard on device

Let’s zoom out a bit!

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

Most downloaded apps in 2023?

1
2
3
4
5
6

7
8
9

10
11
12

https://www.businessofapps.com/data/most-popular-apps/

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

Most downloaded apps in 2023?

1 WeChat 1012
2 Alipay 901
3 Taobao 795
4 Pinduoduo 728
5 Instagram 696
6 Douyin 695

7 TikTok 654
8 QQ 583
9 Facebook 553

10 Baidu 491
11 Kuaishou 480
12 WhatsApp 475

https://www.businessofapps.com/data/most-popular-apps/

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

How many always use HTTPS/TLS?

WeChat 1012
Alipay 901
Taobao 795
Pinduoduo 728
Instagram 696
Douyin 695

TikTok 654
QQ 583
Facebook 553
Baidu 491
Kuaishou 480
WhatsApp 475

https://www.businessofapps.com/data/most-popular-apps/

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2024)

How many always use HTTPS/TLS?

❌ WeChat 1012
❌ Alipay 901
❌ Taobao 795
❌ Pinduoduo 728
✅ Instagram 696
✅ Douyin 695

✅ TikTok 654
❌ QQ 583
✅ Facebook 553
❌ Baidu 491
❌ Kuaishou 480
✅WhatsApp 475

*but they’re also not not encrypting…

many of them are using proprietary cryptography

https://www.businessofapps.com/data/most-popular-apps/

Uh-oh

So far, researchers have mostly been conducting one-off studies analyzing
proprietary cryptography in individual apps

Can we measure this systematically?

Install
app

Isolate
non-TLS

traffic

Download
popular

applications

Entropy
analysis

Simulate user
behavior

91% of top 45 apps exclusively used standard encryption
(QUIC, TLS) to transmit data

4% of top 44 apps exclusively used standard encryption

54% used proprietary cryptography

● Are these backdoors?

● Are these backdoors?
○ No

● Many of these applications became massively popular
around the early 2010s– before TLS was de-facto
standard

● Anti-scraping/competition
● Inertia
● ???

Why is this happening?

1. Find the problems
● Security researchers should pay more attention to these massively

popular but understudied apps
● Any researcher that even looked at this traffic in Wireshark would

know there is a problem

How do we stop it from being bad?

2. Report the problems
● Many did switch to TLS when we reported severe vulns, some did not
● We need to better engage with these companies and put pressure on

them to design better products

How do we stop it from being bad?

3. Prevent future problems?
● Can platforms, app store enforcement, etc. impose restrictions on the

nature of app’s network access?
● “Don’t roll your own crypto” – how do we spread this message?

How do we stop it from being bad?

For our full report…

https://citizenlab.ca/2024/04/vulnerabilities/

https://citizenlab.ca/2024/04/vulnerabilities/

